
EnTR
Engelschall
Technical Report
EnTR-03:2013.12

User Interface Composition
Specification, Functionality Classification, Hierarchical Composition,

Model-View-Controller Roles and Component-Orientation

2EnTR-03:2013.12 — User Interface Composition

Abstract
User Interfaces (UI) are complex, inherently hierarchical
structures. They can be implemented under run-time via a
composition hierarchy of UI Fragments, which are derived
under design-time from Wireframe-based Storyboards
through hierarchical decomposition. The resulting imple-
mentation, by implementing the UI Fragments with the
help of Model-View-Controller based architecture pat-
terns, then also follows the Component Orientation archi-
tecture paradigm.

Keywords
user interface, ontology, hierarchy, composition, compo-
nent, composite, widget

1	 Motivation
Independent of the used technology, User Interfaces
(UI) of applications usually have a very high overall com-
plexity in their implementation. To master complexities
in general, two approaches are known to be very useful:
applying the architecture principle Logical Separation
and applying the architecture paradigm Component
Orientation. We show how we can leverage from those
also in the particular context of UIs with the help of the
Hierarchical Composition process. Additionally, it is vital
to have a common terminology and understanding of all
the involved aspects.

2	 Methodology
User Interfaces (UI) are inherently hierarchical structures.
As such, it makes sense to both comprehend and imple-
ment them with a stringent hierarchical approach and
applying the architecture principle Logical Separation
(aka Separation of Concern) by hierarchically assembling
the UI from UI fragments. For this, it is necessary to un-
derstand how to first decompose the (usually Wireframe
based) specification of an UI into a hierarchy of UI frag-
ments, implement each fragment as a separate compo-
nent and then re-compose the UI under runtime again.

Additionally, for implementing UI fragments the ar-
chitecture pattern Model-View-Controller (MVC) is usual-
ly preferred. This triad of model, view and controller roles
is taken into account, too. All ingredients are named and

defined and this way form an UI taxonomy. Finally, the re-
lationships between the ingredients are defined and this
way (together with the taxonomy) form an UI ontology.

2.1	 User Interface Specification
An User Interface (UI), during the Analysis phase of the
Software Engineering process, is usually specified
through a Storyboard: the visual surface of an application
as a whole, defined with the help of one or more Wire-
frames. A Wireframe is a high-level sketch-like drawing of
an UI Panel or Dialog (see below) and is comprised of one
or more Wireframe Areas.

A Wireframe Area is the mid-level visual area of a
Wireframe, usually functionally corresponding to a Dialog
(see below) or a Container, Control or Visual (see below)
and it is in turn comprised of one or more Wireframe El-
ements. A Wireframe Element is the low-level visual ele-
ment of a Wireframe Area, consisting of text and/or geo-
metrical graphics primitives.

The set of Wireframes in a Storyboard are interlinked
through Interactions, i.e., user actions starting on a Wire-
frame Area (usually corresponding to a Control), causing
arbitrary domain-specific functionality to run and ending
with the appearance of another Wireframe. Additionally,
the interactions can also be grouped and ordered into
interaction paths, which correspond to domain-specific
tasks.

2.2	 User Interface Fragment
Functional Classification

As UIs are complex structures, it is reasonable to break
them down into a set of UI Fragments (see below) and
classify UI Fragments into Composites and Widgets. A
Composite is a high-level UI Fragment, which is either an
orchestrating Panel or interacting Dialog. A Widget is a
mid-level UI Fragment, which is either an orchestrating
Container, an interacting Control or a non-interacting Vi-
sual.

A Panel is a Composite which is mainly orchestrating
multiple contained UI Fragments. A Dialog is a Composite
which is mainly interacting with the user through con-
tained Wigets. A Container is an active Widget, which is
mainly logically grouping other UI Fragments. A Control
is an active Widget, which is mainly interacting with the
user through input mechanisms like keyboard, mouse,
touch-screen, etc. A Visual is a passive Widget, which is
just showing content textually and/or graphically.

2.3	 Hierarchical Composition

User Interface Composition

Ralf S. Engelschall, rse@engelschall.com, http://engelschall.com

Title:	 User Interface Composition
Series:	 Engelschall Technical Report (EnTR)
ID:	 EnTR-03:2013.12
URI:	 http://engelschall.com/go/EnTR-03:2013.12
ISBN:	 978-3-944645-03-2

Specification, Functionality Classification, Hierarchical Composition,
Model-View-Controller Roles and Component-Orientation

3EnTR-03:2013.12 — User Interface Composition

To being able to hierarchically compose an UI under
run-time, we first have to hierarchically decompose its
specification under design-time. For this, we start at the
Storyboard level. The Storyboard corresponds to the root
node of the composition hierarchy and leads to a root
User Interface (UI) node.

Then we take Wireframes and Wireframe Areas and
derive UI Fragments, i.e., high-level visual UI parts, con-
sisting of other nested UI Fragments and UI Elements. UI
Elements in turn are low-level visual UI parts, consisting of
text and/or geometrical graphics primitives.

The crux of the hierarchical decomposition process
is in two major creative decisions: First, when to choose a
a Composite or a Widget flavor for an UI Fragment. Sec-
ond, when to use an all-in-one UI Fragment and when to
use a finer sub-hierarchy of UI Fragments. Both decisions
are highly ambiguous and depend on personal prefer-
ences, domain-specific relationships and even technical
constraints.

The key rules are: First, a Composite is usually al-
ways non-reusable and hence a singleton in the compo-
sition hierarchy, while a Widget intentionally is reusable
and potentially occurs multiple times in the composition
hierarchy. Second, a reasonable balance between all-in-
one “god composites” (which are hard to maintain) and
fine-granular composite sub-trees (which can cause no-
ticeable UI communication overhead) has to be chosen.
Third, the largest Wireframe Areas which occur in multiple
Wireframes are good candidates for UI Fragments.

The result is a composition hierarchy with the User
Interface (UI) as a whole at the root, then a tree of UI Frag-
ments as intermediate nodes and finally primitive UI Ele-
ment nodes nodes at the leaves.

2.4	 Component Tree
Component Orientation is a major architecture paradigm
which implements especially the important architecture
principles Logical Separation (separation of concerns be-
tween the components of a solution), Structural Modu-
larity (splitting of a solution into manageable structural
components) and Encapsulated Complexity (complex re-
lated aspects of a solution are encapsulated into
a single responsible component).

As such it is the perfect vehicle to master the inher-
ent complexity of the UI implementation. In this context
all Composites and Widgets are implemented as separate
Components and the composition hierarchy is represent-
ed as a component tree.

A Component is an Object-Oriented (OO) grouping
of data and behaviour, wrapping a Backing Object. Usu-
ally in the form of a generic functionality provided by a
framework. A Backing Object is an OO grouping of data
and behaviour, backing a Component. Usually in the form
of domain-specific functionality provided by the applica-
tion.

A Component can also host a so-called Shadow
Tree, rooted at another Component.

2.5	 Model-View-Controller (MVC)
Model-View-Controller (MVC) is a well-known — but
most of the time very less strictly applied — architecture
pattern for implementing UI Components. Independent
of the particular MVC flavor, there will be always a Triad of
Model, View and Controller roles a Component plays when
implementing Composites and Widgets.

Just notice that in practice, because of the archi-
tecture principles Avoided Redundancy and Contextual
Adequacy, for implementing a Widget, we usually leave
out the Controller Component, because it is usually pro-
vided by a parent Composite. Similarily, for implement-
ing a Composite, we often leave out the Model and View
Components, because they are usually provided by child
a Widget.

3	 Related Work
The idea of applying Component Orientation to the prob-
lem domain of User Interfaces is not new [Batory & O’Mal-
ley 1992]. It was also described by [Haft & Olleck 2007]
[Haft 2009] and successfully applied to their Quasar Client
architecture.

4	 Acknowledgement
Thanks to Martin Haft (sd&m Research, 2008) for detailled
first-hand information about Quasar Client and its corre-
sponding Component-Oriented Client-Architecture, which
was one of the main inspirations for this methodology.

5	 References
•	 Martin Haft, Bernd Olleck: Komponentenbasierte

Client-Architektur, Informatik Spektrum 30, p. 143,
March 2007.

•	 Martin Haft, Quasar-Client-Architectures, Version
1.02, June 2009.

•	 Don Batory, Sean O’Malley: The Design and Imple-
mentation of Hierarchical Software Systems With Re-
usable Components, ACM Transactions on Software
Engr. and Methodology, October 1992.

•	 Wikipedia: Ontology (information science), http://
en.wikipedia.org/wiki/Ontology_%28information_
science%29

•	 Martin Fowler: GUI Architectures, http://martinfowl-
er.com/eaaDev/uiArchs.html, July 2006

•	 Steve Burbeck: Applications Programming in Small-
talk-80(TM): How to use Model-View-Controller
(MVC), http://st-www.cs.illinois.edu/users/smarch/
st-docs/mvc.html, 1987

4EnTR-03:2013.12 — User Interface Composition

U
se

r I
nt

er
fa

ce
 O

nt
ol

og
y

In
te

lle
ct

ua
l C

on
te

nt
: V

er
sio

n
1.

1.
0.

 (2
01

4-
01

-1
9)

, A
ut

ho
re

d
20

13
-2

01
4

by
 R

al
f S

. E
ng

el
sc

ha
ll

G
ra

ph
ic

al
 Il

lu
st

ra
tio

n:
 V

er
sio

n
1.

1.
0

(2
01

4-
01

-1
9)

, C
op

yr
ig

ht
 ©

 2
01

3-
20

14
 R

al
f S

. E
ng

el
sc

ha
ll

<
ht

tp
://

en
ge

lsc
ha

ll.c
om

>
, A

ll
Ri

gh
ts

 R
es

er
ve

d.
U

na
ut

ho
riz

ed
 R

ep
ro

du
ct

io
n

Pr
oh

ib
ite

d.

Co
m

po
si

te

Co
nt

ro
lle

r:
Ac

tiv
e

Co
m

po
ne

nt
,

de
di

ca
te

d
to

 p
er

fo
rm

pr

es
en

ta
tio

n
pr

ov
isi

on
in

g
to

 a

M
od

el
 a

nd

pr
es

en
ta

tio
n

ac
tio

ni
ng

 fr
om

 a

M
od

el
.

U
I E

le
m

en
t:

Lo
w

-le
ve

l v
isu

al
 U

I
pa

rt
, c

on
sis

tin
g

of
 te

xt

an
d/

or
 g

eo
m

et
ric

al

gr
ap

hi
cs

 p
rim

iti
ve

s.

U
I

M
od

el
:

Pa
ss

iv
e

Co
m

po
ne

nt
,

de
di

ca
te

d
to

 h
os

t
(a

nd
 p

er
fo

rm
 lo

gi
ca

l
op

er
at

io
ns

 o
n)

 v
al

ue
s

(p
ar

am
et

er
s,

co
m

m
an

ds
, s

ta
te

s,
da

ta
 a

nd
 e

ve
nt

s)
 to

se

rv
e

a
Vi

ew
.

W
id

ge
t

U
I

El
em

en
t

+ *11

Pa
ne

l

D
ia

lo
g

Co
nt

ai
ne

r

Co
nt

ro
l

V
is

ua
l

Co
nt

ro
lle

r

M
od

el

V
ie

w

Co
m

po
ne

nt

Co
m

po
si

te
:

H
ig

h-
le

ve
l U

I
Fr

ag
m

en
t;

ei
th

er
 a

n
or

ch
es

tr
at

in
g

Pa
ne

l o
r

in
te

ra
ct

in
g

D
ia

lo
g.

U
se

r I
nt

er
fa

ce
 (U

I):
Vi

su
al

 p
re

se
nt

at
io

n
an

d
in

te
ra

ct
io

n
su

rfa
ce

 o
f a

n
ap

pl
ic

at
io

n
as

 a

w
ho

le
, c

on
sis

tin
g

of

on
e

or
 m

or
e

U
I

Fr
ag

m
en

ts
.

W
id

ge
t:

M
id

-le
ve

l U
I

Fr
ag

m
en

t;
ei

th
er

 a
n

or
ch

es
tr

at
in

g
Co

nt
ai

ne
r,

an

in
te

ra
ct

in
g

Co
nt

ro
l o

r
a

no
n-

in
te

ra
ct

in
g

Vi
su

al
.

W
ir

ef
ra

m
e:

H
ig

h-
le

ve
l v

isu
al

sp

ec
ifi

ca
tio

n
of

 a

Pa
ne

l o
r D

ia
lo

g
Co

m
po

si
te

,
in

te
nt

io
na

lly
 d

ra
w

n
in

sk

et
ch

-s
ty

le
.

V
is

ua
l:

Pa
ss

iv
e

W
id

ge
t,

ju
st

sh

ow
in

g
co

nt
en

t
te

xt
ua

lly
 a

nd
/o

r
gr

ap
hi

ca
lly

.

Co
nt

ro
l:

Ac
tiv

e
W

id
ge

t,
m

ai
nl

y
in

te
ra

ct
in

g
w

ith
 th

e
us

er
 th

ro
ug

h
in

pu
t

m
ec

ha
ni

sm
s l

ik
e

ke
yb

oa
rd

, m
ou

se
,

to
uc

h-
sc

re
en

, e
tc

.

Co
m

po
ne

nt
:

O
bj

ec
t-

or
ie

nt
ed

gr

ou
pi

ng
 o

f d
at

a
an

d
be

ha
vi

or
, w

ra
pp

in
g

a
Ba

ck
in

g
O

bj
ec

t;
us

ua
lly

 in
 th

e
fo

rm
 o

f
ge

ne
ric

 fu
nc

tio
na

lit
y

pr
ov

id
ed

 b
y

a
fra

m
ew

or
k.

D
ia

lo
g:

Co
m

po
si

te
, m

ai
nl

y
in

te
ra

ct
in

g
w

ith
 th

e
us

er
 th

ro
ug

h
co

nt
ai

ne
d

W
id

ge
ts

.

Pa
ne

l:
Co

m
po

si
te

, m
ai

nl
y

or
ch

es
tr

at
in

g
m

ul
tip

le

co
nt

ai
ne

d
U

I
Fr

ag
m

en
ts

.

Co
nt

ai
ne

r:
Ac

tiv
e

W
id

ge
t,

m
ai

nl
y

lo
gi

ca
lly

 g
ro

up
in

g
ot

he
r U

I F
ra

gm
en

ts
.

W
ir

ef
ra

m
e

A
re

a:
M

id
-le

ve
l v

isu
al

 a
re

a
of

 a
 W

ire
fr

am
e,

fu

nc
tio

na
lly

co

rre
sp

on
di

ng
 to

 a

D
ia

lo
g

Co
m

po
si

te
 o

r
a

Co
nt

ai
ne

r,
Co

nt
ro

l
or

 V
is

ua
l W

id
ge

t.

Ba
ck

in
g

O
bj

ec
t

pa
re

nt

ch
ild

0.
.1

*

sh
ad

ow

ho
st

0.
.1

U
se

r I
nt

er
fa

ce
 F

ra
gm

en
t

Fu
nc

ti
on

al
 C

la
ss

ifi
ca

ti
on

H
ie

ra
rc

hi
ca

l
Co

m
po

si
ti

on
M

od
el

-V
ie

w
-C

on
tr

ol
le

r (
M

V
C)

A
rc

hi
te

ct
ur

e
Pa

tt
er

n
Co

m
po

ne
nt

 T
re

e
(C

T)
A

rc
hi

te
ct

ur
e

Pa
tt

er
n

w
ra

pp
er

ba
ck

in
g

0.
.1

0.
.1

0.
.1

0.
.1

Tr
ia

d

V
ie

w
:

Ac
tiv

e
Co

m
po

ne
nt

,
de

di
ca

te
d

to

di
sp

la
yi

ng
 a

nd

in
te

ra
ct

in
g

w
ith

 a

vi
ew

 m
as

k,
 b

as
ed

 o
n

a
bi

-d
ire

ct
io

na
l b

in
di

ng

to
 v

al
ue

s i
n

a
M

od
el

.

Ba
ck

in
g

O
bj

ec
t:

O
bj

ec
t-

or
ie

nt
ed

gr

ou
pi

ng
 o

f d
at

a
an

d
be

ha
vi

or
, b

ac
ki

ng
 a

Co

m
po

ne
nt

; u
su

al
ly

in

 th
e

fo
rm

 o
f

do
m

ai
n-

sp
ec

ifi
c

fu
nc

tio
na

lit
y

pr
ov

id
ed

by

 th
e

ap
pl

ic
at

io
n.

1

1

1

0.
.1

St
or

yb
oa

rd

W
ir

ef
ra

m
e

W
ir

ef
ra

m
e

A
re

a

In
te

ra
ct

io
n

St
or

yb
oa

rd
:

Vi
su

al
 sp

ec
ifi

ca
tio

n
of

an

 a
pp

lic
at

io
n

as
 a

w

ho
le

, d
efi

ne
d

w
ith

th

e
he

lp
 o

f o
ne

 o
r

m
or

e
W

ire
fr

am
es

.

In
te

ra
ct

io
n:

U
se

r a
ct

io
n

on
 a

W

ire
fr

am
e

A
re

a,

ca
us

in
g

ar
bi

tr
ar

y
do

m
ai

n-
sp

ec
ifi

c
fu

nc
tio

na
lit

y
to

 ru
n

an
d

re
su

lti
ng

 in
 th

e
ap

pe
ar

an
ce

 o
f

an
ot

he
r W

ire
fr

am
e.

+1 +

st
ar

t-
po

in
t

en
d-

po
in

t

1
1 1

1U
se

r I
nt

er
fa

ce
Sp

ec
ifi

ca
ti

on

W
ir

ef
ra

m
e

El
em

en
t

+1

U
I F

ra
gm

en
t:

H
ig

h-
le

ve
l v

isu
al

 U
I

pa
rt

, c
on

sis
tin

g
of

ot

he
r n

es
te

d
U

I
Fr

ag
m

en
ts

 a
nd

 U
I

El
em

en
ts

.

W
ir

ef
ra

m
e

El
em

en
t:

Lo
w

-le
ve

l v
isu

al

el
em

en
t o

f a

W
ire

fr
am

e
A

re
a,

co

ns
ist

in
g

of
 sk

et
ch

-
st

yl
ed

 te
xt

 a
nd

/o
r

ge
om

et
ric

al
 g

ra
ph

ic
s

pr
im

iti
ve

s.

U
I

Fr
ag

m
en

t

1

re
pr

es
en

ts

re
pr

es
en

ts

represents

im
pl

em
en

te
d

by

im
pl

em
en

te
d

by

1

Ralf S
. E

ng
el

sc
hall Signature Series Original

Series:		 Engelschall Technical Report (EnTR)
		 http://engelschall.com/go/EnTR

Document:	 EnTR-03:2013.12
�		 http://engelschall.com/go/EnTR-03:2013.12
		 ISBN 978-3-944645-03-2

Last Modification:	 2013-12-31
�		
Author:	 	 Ralf S. Engelschall
�		 Weblinger Weg 28, 85221 Dachau, GERMANY
�		 rse@engelschall.com
�		 http://engelschall.com

Copyright:		 © 2013 Ralf S. Engelschall

License:	 	 Creative Commons CC BY-NC-ND 3.0�
		 http://creativecommons.org/licenses/by-nc-nd/3.0/

