Engelschall
Technical Report
EnTR-03:2013.12

User Interface Composition

Specification, Functionality Classification, Hierarchical Composition,
Model-View-Controller Roles and Component-Orientation

User Interface Composition

Specification, Functionality Classification, Hierarchical Composition,
Model-View-Controller Roles and Component-Orientation

Ralf S. Engelschall, rse@engelschall.com, http://engelschall.com

Abstract

User Interfaces (Ul) are complex, inherently hierarchical
structures. They can be implemented under run-time via a
composition hierarchy of Ul Fragments, which are derived
under design-time from Wireframe-based Storyboards
through hierarchical decomposition. The resulting imple-
mentation, by implementing the Ul Fragments with the
help of Model-View-Controller based architecture pat-
terns, then also follows the Component Orientation archi-
tecture paradigm.

Keywords

user interface, ontology, hierarchy, composition, compo-
nent, composite, widget

1 Motivation

Independent of the used technology, User Interfaces
(UI) of applications usually have a very high overall com-
plexity in their implementation. To master complexities
in general, two approaches are known to be very useful:
applying the architecture principle Logical Separation
and applying the architecture paradigm Component
Orientation. We show how we can leverage from those
also in the particular context of Uls with the help of the
Hierarchical Composition process. Additionally, it is vital
to have a common terminology and understanding of all
the involved aspects.

2 Methodology

User Interfaces (Ul) are inherently hierarchical structures.
As such, it makes sense to both comprehend and imple-
ment them with a stringent hierarchical approach and
applying the architecture principle Logical Separation
(aka Separation of Concern) by hierarchically assembling
the Ul from Ul fragments. For this, it is necessary to un-
derstand how to first decompose the (usually Wireframe
based) specification of an Ul into a hierarchy of Ul frag-
ments, implement each fragment as a separate compo-
nent and then re-compose the Ul under runtime again.

Additionally, forimplementing Ul fragments the ar-
chitecture pattern Model-View-Controller (MVC) is usual-
ly preferred. This triad of model, view and controller roles
is taken into account, too. All ingredients are named and

Title: User Interface Composition

Series: Engelschall Technical Report (EnTR)

ID: EnTR-03:2013.12

URL: http://engelschall.com/go/EnTR-03:2013.12
ISBN: 978-3-944645-03-2

EnTR-03:2013.12 — User Interface Composition

defined and this way form an Ul taxonomy. Finally, the re-
lationships between the ingredients are defined and this
way (together with the taxonomy) form an Ul ontology.

2.1 User Interface Specification

An User Interface (Ul), during the Analysis phase of the
Software Engineering process, is usually specified
through a Storyboard: the visual surface of an application
as a whole, defined with the help of one or more Wire-
frames. A Wireframe is a high-level sketch-like drawing of
an Ul Panel or Dialog (see below) and is comprised of one
or more Wireframe Areas.

A Wireframe Area is the mid-level visual area of a
Wireframe, usually functionally corresponding to a Dialog
(see below) or a Container, Control or Visual (see below)
and it is in turn comprised of one or more Wireframe El-
ements. A Wireframe Element is the low-level visual ele-
ment of a Wireframe Area, consisting of text and/or geo-
metrical graphics primitives.

The set of Wireframes in a Storyboard are interlinked
through Interactions, i.e., user actions starting on a Wire-
frame Area (usually corresponding to a Control), causing
arbitrary domain-specific functionality to run and ending
with the appearance of another Wireframe. Additionally,
the interactions can also be grouped and ordered into
interaction paths, which correspond to domain-specific
tasks.

2.2 User Interface Fragment
Functional Classification

As Uls are complex structures, it is reasonable to break
them down into a set of Ul Fragments (see below) and
classify Ul Fragments into Composites and Widgets. A
Composite is a high-level Ul Fragment, which is either an
orchestrating Panel or interacting Dialog. A Widget is a
mid-level Ul Fragment, which is either an orchestrating
Container, an interacting Control or a non-interacting Vi-
sual.

A Panel is a Composite which is mainly orchestrating
multiple contained Ul Fragments. A Dialog is a Composite
which is mainly interacting with the user through con-
tained Wigets. A Container is an active Widget, which is
mainly logically grouping other Ul Fragments. A Control
is an active Widget, which is mainly interacting with the
user through input mechanisms like keyboard, mouse,
touch-screen, etc. A Visual is a passive Widget, which is
just showing content textually and/or graphically.

2.3 Hierarchical Composition

To being able to hierarchically compose an Ul under
run-time, we first have to hierarchically decompose its
specification under design-time. For this, we start at the
Storyboard level. The Storyboard corresponds to the root
node of the composition hierarchy and leads to a root
User Interface (Ul) node.

Then we take Wireframes and Wireframe Areas and
derive Ul Fragments, i.e., high-level visual Ul parts, con-
sisting of other nested Ul Fragments and Ul Elements. Ul
Elements in turn are low-level visual Ul parts, consisting of
text and/or geometrical graphics primitives.

The crux of the hierarchical decomposition process
is in two major creative decisions: First, when to choose a
a Composite or a Widget flavor for an Ul Fragment. Sec-
ond, when to use an all-in-one Ul Fragment and when to
use a finer sub-hierarchy of Ul Fragments. Both decisions
are highly ambiguous and depend on personal prefer-
ences, domain-specific relationships and even technical
constraints.

The key rules are: First, a Composite is usually al-
ways non-reusable and hence a singleton in the compo-
sition hierarchy, while a Widget intentionally is reusable
and potentially occurs multiple times in the composition
hierarchy. Second, a reasonable balance between all-in-
one “god composites” (which are hard to maintain) and
fine-granular composite sub-trees (which can cause no-
ticeable Ul communication overhead) has to be chosen.
Third, the largest Wireframe Areas which occur in multiple
Wireframes are good candidates for Ul Fragments.

The result is a composition hierarchy with the User
Interface (Ul) as a whole at the root, then a tree of Ul Frag-
ments as intermediate nodes and finally primitive Ul Ele-
ment nodes nodes at the leaves.

2.4 Component Tree

Component Orientation is a major architecture paradigm
which implements especially the important architecture
principles Logical Separation (separation of concerns be-
tween the components of a solution), Structural Modu-
larity (splitting of a solution into manageable structural
components) and Encapsulated Complexity (complex re-
lated aspects of a solution are encapsulated into

a single responsible component).

As such it is the perfect vehicle to master the inher-
ent complexity of the Ul implementation. In this context
all Composites and Widgets are implemented as separate
Components and the composition hierarchy is represent-
ed as a component tree.

A Component is an Object-Oriented (OO) grouping
of data and behaviour, wrapping a Backing Object. Usu-
ally in the form of a generic functionality provided by a
framework. A Backing Object is an OO grouping of data
and behaviour, backing a Component. Usually in the form
of domain-specific functionality provided by the applica-
tion.

A Component can also host a so-called Shadow
Tree, rooted at another Component.

EnTR-03:2013.12 — User Interface Composition

2.5 Model-View-Controller (MVC)

Model-View-Controller (MVC) is a well-known — but
most of the time very less strictly applied — architecture
pattern for implementing Ul Components. Independent
of the particular MVC flavor, there will be always a Triad of
Model, View and Controller roles a Component plays when
implementing Composites and Widgets.

Just notice that in practice, because of the archi-
tecture principles Avoided Redundancy and Contextual
Adequacy, for implementing a Widget, we usually leave
out the Controller Component, because it is usually pro-
vided by a parent Composite. Similarily, for implement-
ing a Composite, we often leave out the Model and View
Components, because they are usually provided by child
a Widget.

3 Related Work

The idea of applying Component Orientation to the prob-
lem domain of User Interfaces is not new [Batory & O'Mal-
ley 1992]. It was also described by [Haft & Olleck 20071
[Haft 2009] and successfully applied to their Quasar Client
architecture.

4 Acknowledgement

Thanks to Martin Haft (sd&m Research, 2008) for detailled
first-hand information about Quasar Client and its corre-
sponding Component-Oriented Client-Architecture, which
was one of the main inspirations for this methodology.

5 References

. Martin Haft, Bernd Olleck: Komponentenbasierte
Client-Architektur, Informatik Spektrum 30, p. 143,
March 2007.

. Martin Haft, Quasar-Client-Architectures, Version

1.02, June 2009.

. Don Batory, Sean O'Malley: The Design and Imple-
mentation of Hierarchical Software Systems With Re-
usable Components, ACM Transactions on Software
Engr. and Methodology, October 1992.

. Wikipedia: Ontology (information science), http:/
en.wikipedia.org/wiki/Ontology_%?28information_
science%29

. Martin Fowler: GUI Architectures, http://martinfowl-
er.com/eaaDev/uiArchs.html, July 2006

. Steve Burbeck: Applications Programming in Small-
talk-80(TM): How to use Model-View-Controller
(MVCQ), http://st-www.cs.illinois.edu/users/smarch/
st-docs/mvc.html, 1987

paniasay syBly ||y ‘<wodfleydsiabua/ dny> (leydsiabus 'S Jley v10z2-€ 10z © WbuAdod (6

pauqIyoId uondNpoiday pazioyineun

o

| UOISIaA uonesnj|| [eaiydersy

11RY2s196U3 °S J1eyY Aq 102-€ 10Z PRIOYINY (61-L0-7L0Z) 0"l | UOISISA JUSIUOD [ENID3|31U|

‘uonedidde ayy Aq “Iomawel ‘SWelRIIM Jayioue
papiroid Aljeuonouny e Aq papinol ‘saAniwud 196pIM [ensIA 1o Jjo adueieadde
Jyipads-ulewop Aujeuonouny dlisusb '219 ‘U93125-UdN0Y so1ydeub [ea1nswosb |oJ1u0) ‘IauleIuo) e au1 Ul bunnsai pue
Jo wioy sy Ul JO W0y a1 Ul Ajjensn ‘3sNOW ‘pIROgASY 10/pue 1xa1 pajAls 10 ausodwo) bojeiq uni 01 A1ifeuonouny
Ajlensn ‘qusuodwo) 133(qQ bubjdeg “Aljeaiydesd M| swisiueydaw Aﬂwm_u_\,\wvwc_ﬁcou ‘syuawbe.y -U2193s Jo Bunsisuod e 0] bulpuodsa1i0d Jyioads-urewop
e Buppdeq JoIney e buiddeim”joineya Jo/pue Ajjenixal andur ybnouyy Jasn .mu:mEmEm x) JEIe) ybnoiyy Jasn w: pauleluod ‘ealy Swelalip A|jeuonouny Aienique buisned
pue e1ep jo buidnol pue e1ep jo buidnol 1U21U0d BuIMmoys QU1 Y1IM Bundelaul Buidnoub Ajjedibo) Y1 yum bundesaiul || 9jdinw bunenssydio © JO JUSWSjo ‘SWieljRIIM P JO ‘ealy swesiIm
pa1Ua1I0-123[q0 pa1Ua1I0-123[00 15N 19BPIM SAISSEd | | Alutew ‘19BpIp 9ANDY | | Auiew 196pIm aADY Ajurew ‘aysodwod Jurew ‘aysodwod [BNSIA [9A3]-MOT 3B [BNSIA [9AS]-PIN © UO UONDE 35N
:399[qO bunpeg ;usuodwo) :jensip Josuod :19uleju0d :bojeiq ;Pued || :juswia|z sweayaIMm ealy aweadlim :uondeIU|
"M3IA B 9AIDS NETelel]
‘|SPOW B Ul san[eA 01 01 (S1U2AS puP e1EP e woyy buluonoe ‘sjuswbely
Buipulq [euondalIp-1q ‘S3)e1S ‘SPUBLUWLIOD uoneiussald | 2I0W IO U0 Bunoelsy CISEEVIEN
© UO PIseq “YSew MaIA ‘sio1awieled) pue [9po| ‘SJUBWIA|] Jo BunsIsuod ‘sjoym || o [os3uo) Bundesaiul Ul Umeip Ajjeuonuaiul
B yum bunoessiul san|en (Uo suonesado e 01 BujuoIsIAOJ ‘sanwud soiydelb 1N pue syuswbely e se uoned|dde ue ‘Iaulejuo) ‘bojelg Hbundesaiul ‘a)sodwo)
pue buike|dsip |ed160| wiopad pue) uonejuasaid |eouawioab Jo/pue |0 pa1sau 12Yy1o ue JO 20BJINS mczmzmmmEo 10 |aue(Bunensaysio bojeiq Jo [aue, UM pauyap ‘ajoym
01 paiedipap 1504 01 pa1edipap wiopad 01 paredipap || 1xa1 Jo bunsisuod ‘Led Jo bunsisuod ‘Led uonoeIIU| pur ue Jayle Juawbely ue Jayue Juawbely e Jo uoneoyads e se uoljedidde ue
‘quauodwio) aAldY quauodwo) aAIssed usuodwo) aAdY 1N [eNSIA[9AS|-MOT] 1N [ensiA [9A3|-YbIH uoneiuasald [ensip 1IN [9AS-PIA N [PAS-Y6IH [BNSIA [2A]-YBIH Jo uonedyidads [ensip
IMIIN PO :a9)j013U0) uawidl3 IN Juawbeld In :(1n) @2eyia3u] 1950 39bpIM :ausodwo) EETTEITENTITY :pieoqAiols
juswa|3 juswd|3z
In aweayd1M\
23lqo jensip
Bunjpeg
oo QI ronuey [| ey
Aoulejuo)
juswibeiy :
aC&COQEOU I°POIN In uoljdeiayu
$oy e+ m
ojel
A9]|]043U0) 1ela
mopews ausodwo) ENNTITESTIT -
oue .
[oued n
[l 1
H L ! L
1] 1
: n - pieoqLioys
% paruawiaidi] m _ sjuasaidal m
1 1
1 1
uiajled 2injdaiydiy uiajled a2injdaiydiy \ :O_u_WOQEOU uoijedyisse|) jeuoidung 4 :O_umu_.._._uw.um
) 1
] (1LD) @341 u.:w:Oo_EQU (DAN) 19]]013U0D-MIIA-|SPOIN “, jesnydiesaiy u:wEmm._u_ 2dejaju] 19sn ~“ adejaa3u] Jasn
< AN . N \ -

ABojo3uQ SOeISIU| SN

User Interface Composition

:2013.12

EnTR-03

Series:

Document:

Last Modification:

Author:

Copyright:

License:

Engelschall Technical Report (EnTR)
http://engelschall.com/go/EnTR

EnTR-03:2013.12
http://engelschall.com/go/EnTR-03:2013.12
ISBN 978-3-944645-03-2

2013-12-31

Ralf S. Engelschall

Weblinger Weg 28, 85221 Dachau, GERMANY
rse@engelschall.com

http://engelschall.com

© 2013 Ralf S. Engelschall

Creative Commons CC BY-NC-ND 3.0
http://creativecommons.org/licenses/by-nc-nd/3.0/

